

Preprint 45/2013
The Cubic-to-Orthorhombic Phase Transition - Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity
Angkana Rüland
Contact the author: Please use for correspondence this email.
Submission date: 03. May. 2013
Pages: 63
published in: Archive for rational mechanics and analysis, 221 (2016) 1, p. 23-106
DOI number (of the published article): 10.1007/s00205-016-0971-5
Bibtex
Download full preprint: PDF (510 kB)
Abstract:
In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques,
we prove that this phase transition represents one of the simplest
three-dimensional examples in which already the linearized theory of elasticity
displays non-rigidity properties. As a complementary result, we
demonstrate that surface energy constraints rule out such highly oscillatory
behaviour. We give a full characterization of all possibly emerging
patterns for generic values of δ.