Information Geometry and its Applications III

Abstract Christopher Dodson

Go back to


Christopher Dodson  (University of Manchester, United Kingdom)
Friday, August 06, 2010, room Hörsaal 1
An inhomogeneous stochastic rate process for evolution from states in an information geometric neighbourhood of uniform fitness

This study elaborates some examples of a simple evolutionary stochastic rate process where the population rate of change depends on the distribution of properties --- so different cohorts change at different rates. We investigate the effect on the evolution arising from parametrized perturbations of uniformity for the initial inhomogeneity. The information geometric neighbourhood system yields also solutions for a wide range of other initial inhomogeneity distributions, including approximations to truncated Gaussians of arbitrarily small variance and distributions with pronounced extreme values. It is found that, under quite considerable alterations in the shape and variance of the initial distribution of inhomogeneity in unfitness, the decline of the mean does change markedly with the variation in starting conditions, but the net population evolution seems surprisingly stable.

Keywords: Evolution, inhomogeneous rate process, information geometry, entropy, uniform distribution, log-gamma distribution.

 

Date and Location

August 02 - 06, 2010
University of Leipzig
Augustusplatz
04103 Leipzig
Germany

Scientific Organizers

Nihat Ay
Max Planck Institute for Mathematics in the Sciences
Information Theory of Cognitive Systems Group
Germany
Contact by Email

Paolo Gibilisco
Università degli Studi di Roma "Tor Vergata"
Facoltà di Economia
Italy
Contact by Email

František Matúš
Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation
Czech Republic
Contact by Email

Scientific Committee

Shun-ichi Amari
RIKEN
Brain Science Institute, Mathematical Neuroscience Laboratory
Japan
Contact by Email

Imre Csiszár
Hungarian Academy of Sciences
Alfréd Rényi Institute of Mathematics
Hungary
Contact by Email

Dénes Petz
Budapest University of Technology and Economics
Department for Mathematical Analysis
Hungary
Contact by Email

Giovanni Pistone
Collegio Carlo Alberto, Moncalieri
Italy
Contact by Email

Administrative Contact

Antje Vandenberg
Max Planck Institute for Mathematics in the Sciences
Contact by Email
Phone: (++49)-(0)341-9959-552
Fax: (++49)-(0)341-9959-555

05.04.2017, 12:42