Search

Workshop

A1-Brouwer Degrees in Macaulay2

  • Gabriel Ong
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)

Abstract

The A^1-Brouwer degree can be thought of as an analogue of the topological Brouwer degree valued in the Grothendieck-Witt ring of symmetric bilinear forms. These A^1-degrees allow for the generalization of algebro-geometric invariants such as intersection numbers and Milnor numbers over arbitrary fields. We present the Macaulay2 package 'A1BrouwerDegrees' for computing local and global A^1-Brouwer degrees as well as for studying symmetric bilinear forms over fields.

Links

conference
29.07.24 02.08.24

MEGA 2024

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Felix-Klein-Hörsaal

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Christian Lehn

Ruhr-Universität Bochum

Irem Portakal

Max Planck Institute for Mathematics in the Sciences

Rainer Sinn

Universität Leipzig

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences

Simon Telen

Max Planck Institute for Mathematics in the Sciences