Search
Talk

Amenable subrelations of treed equivalence relations and the Paddle-ball lemma

  • Robin Tucker-Drob (University of Florida)
Raum P801 Universität Leipzig (Leipzig)

Abstract

We give a comprehensive structural analysis of amenable subrelations of a treed measure-class-preserving equivalence relation. The main philosophy is to understand the behavior of the Radon-Nikodym cocycle in terms of the geometry of the amenable subrelation within the treeing. This allows us to extend structural results that were previously only known in the measure-preserving setting, e.g., we show that every nowhere smooth amenable subrelation is contained in a unique maximal amenable subrelation. Two of the main ingredients are an extension of Carrière and Ghys's criterion for nonamenability, along with a new Ping-Pong-style argument we call the "Paddle-ball lemma" that we use to apply this criterion in our setting. This is joint work with Anush Tserunyan.

seminar
12/8/22 1/25/24

Seminar on Algebra and Combinatorics

Universität Leipzig Seminargebäude 213

Mirke Olschewski

MPI for Mathematics in the Sciences Contact via Mail