Search

Workshop

Complex tensor approximations

  • Lek-Heng Lim (University of Chicago, Chicago, USA)
E1 05 (Leibniz-Saal)

Abstract

We show that in finite-dimensional nonlinear approximations, the best r-term approximant of a function almost always exists over complex numbers but that the same is not true over the reals. Our result extends to functions that possess special properties like symmetry or skew-symmetry under permutations of arguments. For the case where we use separable functions for approximations, the problem becomes that of best rank-r tensor approximations. We show that over the complex numbers, any tensor almost always has a unique best rank-r approximation. This extends to other notions of tensor ranks such as symmetric rank and alternating rank, to best r-block-terms approximations, and to best approximations by tensor networks. When applied to sparse-plus-low-rank approximations, we obtain that for any given r and k, a general tensor has a unique best approximation by a sum of a rank-r tensor and a k-sparse tensor with a fixed sparsity pattern. The existential (but not the uniqueness) part of our result also applies to best approximations by a sum of a rank-r tensor and a k-sparse tensor with no fixed sparsity pattern, as well as to tensor completion problems. This is joint work with Mateusz Michalek and Yang Qi.

Saskia Gutzschebauch

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail

Evrim Acar

Simula Metropolitan Center for Digital Engineering

André Uschmajew

Max Planck Institute for Mathematics in the Sciences

Nick Vannieuwenhoven

KU Leuven