Complex tensor approximations
- Lek-Heng Lim (University of Chicago)
Abstract
We show that in finite-dimensional nonlinear approximations, the best r-term approximant of a function almost always exists over complex numbers but that the same is not true over the reals. Our result extends to functions that possess special properties like symmetry or skew-symmetry under permutations of arguments. For the case where we use separable functions for approximations, the problem becomes that of best rank-r tensor approximations. We show that over the complex numbers, any tensor almost always has a unique best rank-r approximation. This extends to other notions of tensor ranks such as symmetric rank and alternating rank, to best r-block-terms approximations, and to best approximations by tensor networks. When applied to sparse-plus-low-rank approximations, we obtain that for any given r and k, a general tensor has a unique best approximation by a sum of a rank-r tensor and a k-sparse tensor with a fixed sparsity pattern. The existential (but not the uniqueness) part of our result also applies to best approximations by a sum of a rank-r tensor and a k-sparse tensor with no fixed sparsity pattern, as well as to tensor completion problems. This is joint work with Mateusz Michalek and Yang Qi.