Search

Workshop

Equi-affine minimal-degree moving frames for polynomial curves

  • Irina Kogan
E1 05 (Leibniz-Saal)

Abstract

We develop a theory and an algorithm for constructing minimal-degree polynomial moving frames for polynomial curves in an affine space. The algorithm is equivariant under volume-preserving affine transformations of the ambient space and the parameter shifts. We show that any matrix-completion algorithm can be turned into an equivariant moving frame algorithm via an equivariantization procedure that we develop. If a matrix-completion algorithm is of minimal degree then so is the resulting equivariant moving frame algorithm. We propose a novel minimal-degree matrix-completion algorithm, complementing the existing body of literature on this topic.

This is a joint work with Hoon Hong, NC State University.

Links

conference
29.07.24 02.08.24

MEGA 2024

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Felix-Klein-Hörsaal

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Christian Lehn

Ruhr-Universität Bochum

Irem Portakal

Max Planck Institute for Mathematics in the Sciences

Rainer Sinn

Universität Leipzig

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences

Simon Telen

Max Planck Institute for Mathematics in the Sciences