Search

Talk

Homogenization of problems in ∞

  • Adriana Garroni (Universita di Roma La Sapienza)
A3 01 (Sophus-Lie room)

Abstract

We study the homogenization of functionals of the form $$\left\Vert f \left( \frac{x}{e}, \nabla u \right) \right\Vert_{L^\infty (\Omega)}$$. These functionals are related to a model of dielectric breackdown and can be used as a variational approximation of power-law energies. We compute optimal bounds in the case of the mixtures of two materials, which exhibit a different structure from the integral case. We prove a homogenization theorem in a general context and compare it with the corresponding result for the integral case.

seminar
26.11.96 29.08.24

Oberseminar Analysis

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E2 10 (Leon-Lichtenstein) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Augusteum - A314

Anne Dornfeld

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar