Search

Workshop

Information and dynamics in brain-body-environment systems

  • Randall D. Beer (Indiana University, Bloomington, USA)
E1 05 (Leibniz-Saal)

Abstract

Within cognitive science, there has been considerable debate about the relative merits of information-processing vs. dynamical approaches to understanding cognitive processes. This talk will adopt the position that the mathematical theories underlying these two approaches - information theory and dynamical systems theory, respectively - are best viewed as distinct mathematical lenses through which one can examine the operation of any system of interest. Thus, the concern should not be which approach to cognition is "right", but rather the different sorts of explanations that each lens reveals and the interrelationships between these explanations when both lenses are applied to the same cognitive system.

In order to explore these issues, I will describe the analysis of a model agent evolved to solve a relational categorization task. In this task, an agent presented with two falling objects of different sizes in sequence must catch the second object if it is smaller than the first and avoid it otherwise. Interestingly, both largely disembodied and strongly embodied strategies evolve to make this relational judgement. After a brief review of separate dynamical and information-theoretic analyses of the operation of these agents, I will focus on examining the ways in which these two explanations connect. This talk describes joint work with Paul Williams.

Links

Antje Vandenberg

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Nihat Ay

Max Planck Institute for Mathematics in the Sciences

Ralf Der

Max Planck Institute for Mathematics in the Sciences

Keyan Ghazi-Zahedi

Max Planck Institute for Mathematics in the Sciences

Georg Martius

Max Planck Institute for Mathematics in the Sciences