Landau singularities


The study of the singularities of Feynman integrals is a classical problem in scattering amplitudes. In this joint work with Sabastian Mizera and Simon Telen, we elaborate on the recent reformulation of Landau singularities of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations.

Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram.

I will illustrate some examples where our package implementation, PLD.jl, using numerical nonlinear algebra methods, allows us to compute components of the Landau singular locus that were previously out of reach.


12.02.24 16.02.24

Positive Geometry in Particle Physics and Cosmology

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Hörsaal für Theoretische Physik

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Johannes Henn

Max Planck Institute for Physics

Bernd Sturmfels

Max-Planck-Institut für Mathematik in den Naturwissenschaften