On colored multiset Eulerian polynomials
- Danai Deligeorgaki (KTH Stockholm)
Abstract
The central objects in this talk are the descent polynomials of colored permutations on multisets, referred to as colored multiset Eulerian polynomials. These polynomials generalize the colored Eulerian polynomials that appear frequently in algebraic combinatorics and are known to admit desirable distributional properties, including real-rootedness, log-concavity, unimodality and the alternatingly increasing property. In joint work with Bin Han and Liam Solus, symmetric colored multiset Eulerian polynomials are identified and used to prove sufficient conditions for a colored multiset Eulerian polynomial to satisfy the self-interlacing property. This property implies that the polynomial obtains all of the aforementioned distributional properties as well as others, including bi-gamma-positivity. To derive these results, multivariate generalizations of a generating function identity due to MacMahon are deduced. The results are applied to a pair of questions, both previously studied in several special cases, that are seen to admit more general answers when framed in the context of colored multiset Eulerian polynomials. The first question pertains to s-Eulerian polynomials, and the second to interpretations of gamma-coefficients. We will see some of these results in detail, depending on the pace of the talk. At the last part of the talk, we will see connections between multiset permutations and polytopes from algebraic statistics.