Parallel Algorithms for CP and Tucker Decompositions
- Grey Ballard (Wake Forest University)
Abstract
Multidimensional data, coming from scientific applications such as numerical simulation or multimodal imaging, can often overwhelm the memory or computational resources of a single workstation. In this talk, we’ll describe parallel algorithms and software implementations for computing both CP and Tucker decompositions of large, dense tensors. The open-source software is designed for clusters of computers and has been benchmarked on various supercomputers. The algorithms are scalable, able to process terabyte-sized tensors and maintain high computational efficiency for 100s to 1000s of processing nodes. We will detail the data distribution and parallelization strategies for the key computational kernels within the algorithms, which include the matricized-tensor times Khatri-Rao product, the tensor times matrix product, and computation of (structured) Gram matrices.