Search

Workshop

Tensor-Ideal-Operator Correspondence

  • James Wilson (Colorado State University, Fort Collins, USA)
E1 05 (Leibniz-Saal)

Abstract

Tensor generalizations of standard linear algebra (for example rank, eigen and singular values) are now known to be NP-hard. But tensors are not only generalized linear algebra. Tensors can just as well be studied as generalized non-associative algebra. I will survey a number of polynomial-time algorithm for tensor structure made possible from this perspective leading to a summary result: Lie algebras, not associative rings, are the universal coefficients for tensor products.

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Daniele Faenzi

Université de Bourgogne, CNRS

Joshua Maglione

Otto-von-Guericke-Universität

Mima Stanojkovski

Università di Trento