Talk

The Baum-Connes Vermutung and the Trace-Conjecture

  • Wolfgang Lück (Westfälische Wilhelms-Universität Münster, Institut für Mathematik, Germany)
A3 01 (Sophus-Lie room)

Abstract

We prove a version of the L2-index Theorem of Atiyah which uses the universal center-valued trace instead of the standard trace. We construct for G-equivariant K-homology an equivariant Chern character, which is an isomorphism and lives over the ring zzsubsetLambdaGsubsetqq obtained from the integers by inverting the orders of all finite subgroups of G.We use these two results to show that the Baum-Connes Conjecture implies the modifiedTrace Conjecture which says that the image of the standard trace K0(Cr(G))or takes values in LambdaG. The original Trace Conjecture due to Baum and Connespredicted that its image lies in the additive subgroup of r generated by the inverses of all the orders of the finite subgroups of G, and has been disproven by Ranja Roy recently.