The Gaussian conditional independence inference problem
- Tobias Boege (MPI MiS, Leipzig)
Abstract
Conditional independence is a ternary relation on subsets of a finite vector of random variables
This talk is about regular Gaussian distributions. In this case, conditional independence has an algebraic characterization in terms of subdeterminants of the covariance matrix and inference, a discrete problem by nature, becomes a geometric question about the vanishing of very special polynomials on very special varieties inside the cone of positive-definite matrices.
In the first part of the talk, I show that the space of counterexamples to a (wrong) inference formula can be "difficult" by multiple measures. In particular, proving inference formulas wrong is polynomial-time equivalent to the existential theory of the reals. In the second part, I report on practical approximations to the inference problem and computational results on the way of classifying all Gaussian CI structures on five random variables.