

Preprint 53/2005
Martin points on open manifolds of non-positive curvature
Jianguo Cao, Huijun Fan, and François Ledrappier
Contact the author: Please use for correspondence this email.
Submission date: 30. May. 2005
Pages: 28
Bibtex
Download full preprint: PDF (307 kB), PS ziped (282 kB)
Abstract:
The Martin boundary of a Cartan-Hadamard manifold describes a fine geometric structure at infinity, which is a sub-space of positive harmonic
functions. We describe conditions which ensure that some points of the sphere at infinity belong to the Martin boundary as well. In the case of
the universal cover of a compact manifold with Ballmann rank one, we show that Martin points are generic and of full harmonic measure. The
result of this paper provides a partial answer to an open problem of S. T. Yau.