Abstract for the talk at 23.06.2014 (16:45 h)

Oberseminar GEOMETRIE

Shiping Liu (University of Durham, United Kingdom)
Cheeger constant, spectral clustering and eigenvalue ratios of Laplacian

In this talk, I will explain an optimal dimension-free upper bound for eigenvalue ratios λk∕λ1 of the Laplacian on a closed Riemannian manifold with nonnegative Ricci curvature. This is achieved by borrowing tools from theoretical spectral clustering algorithm analysis in computer science. I will further discuss several of its applications, including improving higher-order Buser inequality, higher-order Gromov-Milman inequality and multi-way isoperimetric constant ratios estimate. Its extension to compact finite-dimensional Alexandrov spaces with nonnegative curvature affirms a recent conjecture of Funano and Shioya. On finite discrete graphs, it also has very interesting applications.


01.03.2017, 13:57