Abstract for the talk on 01.06.2022 (14:00 h)

Seminar on Nonlinear Algebra

Lorenzo Baldi (Inria Sophia Antipolis-Méditerranée)
Flat Truncation in Polynomial Optimization: a Geometric and Algebraic Perspective
01.06.2022, 14:00 h, MPI für Mathematik in den Naturwissenschaften Leipzig, E1 05 (Leibniz-Saal)

In Polynomial Optimization, finite convergence of the Lasserre’s Moment and Sums of Squares hierarchies is usually observed in applications, but it is not completely investigated theoretically. In practice, finite convergence is certified using Flat Truncation, a rank condition on the moment matrix of the sequence of moments that realize the minimum. We investigate the Flat Truncation property, studying Lasserre’s spectrahedral outer approximations of the convex cone of measures supported on a semialgebraic set. We present different pathological examples and introduce a new generic algebraic condition that is necessary and sufficient for Flat Truncation. Finally, we deduce convergence rates for Lasserre’s spectrahedral outer approximations to the cone of measures from a new version of the Effective Putinar’s Positivstellensatz. Based on joint works with Bernard Mourrain and Adam Parusinski.

Physical attendance in seminars is restricted to 25 participants.
If you want to attend this talk, you need to register in advance. Registration will be open starting seven days before the seminar and registrations will be accepted on first come, first served basis. External participants from Leipzig University need to fill in their name, address, email, and phone number.
Please also check our general Corona rules page. Participants must wear a face mask, and they are encouraged to use the corona rapid tests made available by the institute.

05.04.2022, 16:24