Abstract for the talk on 25.05.2022 (15:00 h)

Seminar on Nonlinear Algebra

Marc Härkönen (MPI MiS, Leipzig)
Dual representations of polynomial modules with applications to partial differential equations
25.05.2022, 15:00 h, MPI für Mathematik in den Naturwissenschaften Leipzig, G3 10 (Hörsaal)

In 1939, Wolfgang Gröbner proposed using differential operators to represent ideals in a polynomial ring. Using Macaulay inverse systems, he showed a one-to-one correspondence between primary ideals whose variety is a rational point, and finite dimensional vector spaces of differential operators with constant coefficients. The question for general ideals was left open. Significant progress was made in the 1960’s by analysts, culminating in a deep result known as the Ehrenpreis-Palamodov fundamental principle, connecting polynomial ideals and modules to solution sets of linear, homogeneous partial differential equations with constant coefficients.

This talk aims to survey classical results, and provide recent constructions, applications, and insights, merging concepts from analysis and nonlinear algebra. We offer a new formulation generalizing Gröbner’s duality for arbitrary polynomial ideals and modules and connect it to the analysis of PDEs. This framework is amenable to the development of symbolic and numerical algorithms. We also study some applications of algebraic methods in problems from analysis.

Physical attendance in seminars is restricted to 15 participants.
If you want to attend this talk, you need to register in advance using this special form. Registrations will be accepted on first come, first served basis. External participants from Leipzig University need to fill in their name, address, email, and phone number.
Please also check our general Corona rules page. Participants must wear a face mask, and they are encouraged to use the corona rapid tests made available by the institute.

18.05.2022, 00:09